

CO₂ Injection in the Altmark Natural Gas Field, Germany: Simulations of Water Injection to Delay CO₂ Breakthrough

D. Rebscher¹, F. May², C.M. Oldenburg¹

¹ Earth Sciences Division, Lawrence Berkeley National Laboratory ² Bundesanstalt für Geowissenschaften und Rohstoffe, Germany

ABSTRACT

Numerical simulations of CO₂ injection into the nearly depleted Salzwedel-Peckensen (SwiPes) reservoir of the Altmark gas field, Sachsen-Anhalt, Germany, have been carried out to investigate the feasibility of carbon sequestration with enhanced gas reconstruction of the composition of the compos

OBJECTIVES

The feasibility of carbon sequestration with enhanced gas recovery is investigated as a new strategy for mature natural gas fields in Germany due to

- decreasing gas production
- ${\rm CO_2}$ emission trading starting in 2005 in the European Union Numerical simulations are performed using the TOUGH2 module EOS7C with the parameters listed below. Note that the simulations assume pure ${\rm CO_2}$ injection into pure ${\rm CH_4}$ reservoir.

model parameter	value			
number of injection wells in total	27			
number of extraction wells in total	27			
model type	5-spot-configuration			
model area	$2.1 \mathrm{km} \times 2.1 \mathrm{km}$			
reservoir height	226 m			
dip of layers	0.0			
temperature	120°C, constant			
pressure	hydrostatic distribution			
pressure at the bottom	20 MPa			
duration of CO ₂ injection phase	40 a			
total CO ₂ injection rate	420 - 10 ⁶ t CO ₂			
CO ₂ injection rate at one sink site	1.6 to 16 kg/s			
geometry of source	vertical column			
duration of CH ₄ extraction	40 a, simultaneous to CO ₂ injection			
prometry of sink	vertical column			

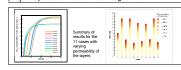
MATERIALS + METHODS

Salzwedel Peckensen, Altmark region, Sachsen-Anhalt, Germany

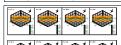
Well spacing and 5-spot discretization

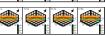
Hydrostratigraphic units and 3D grid

Initial conditions


RESULTS

Migration of CO₂ through the reservoir




injection or CO₂ (inglihand side of domain) an simultaneous extraction of CH₄ (left-hand side of domain) at eight times and the resulting CO₂ in the gas phase migrating from the extraction to the production well

CO₂ at the production well and breakthrough times

Water injection for mobility control

Injection of water (righthand side of domain) and simultaneous extraction of CH₂ at eight times (left-hand side of domain) and the resulting liquid saturation

Different amounts of water injection

	some all	const	www.g	casele	court	rore)
O leg/si		2.9091	5.8182	8.7273	11.6364	14.5455
O compared to O in case f	- 0		2 × bigger	3 × bigger	4 × bigger	$5 \times bigger$
in lig/s in sylc18	-	0.7703	1,3047	9.8521	2,0091	3.7618
v. log/s/ts s9 11		2.1567	4.3135	6.4702	K.GZTU	10.7837
time CO ₂ in gas phase 5 1%	4.75a	4.96a	5,07a	5.16a	5.28 s.	5.31a
time CO ₂ in gas phase > 10%	5x92n	5,297 n	6J01 n	0.17 a	6(20 n	0.44a
time between COs in gas phase 5 1% til 5 50%.	3.30 a	3.27 n	3.47 n	3.55 u	3.77 n	3.56 s
delay of breakthrough for > 1%		0.218 z.	0.323-0	0.516 n	0.825-9	0.555 n
delay of breakthrough for > 10%	-	0.250 x	0.409.a	0.760 x	0.663a	0.511 a
simulated time	40 n	40 a	40 a	2011	45.4n	9211
machine	P4 (1)	P4 (1)	P4 (II)	P4 (0)	P4 (1)	P4(0)
number of timesteps	334	418	309	471	10313	365
calculation time	6536 y	7245×	10065 y	8832 v		11266)

CONCLUSION

The numerical simulations of CSEGR indicate that the Altmark area in the North German Basin is a suitable reservoir for CO₂ storage.

In the simplified 3D model the CO₂ breakthrough occurs first through the high permeability layers within 3 a to

With appropriate injection and extraction strategies, e.g. by injecting water in the high permeability layers before injecting CO₂, the CO₂ breakthrough can be retarded for about another year.

For more specific results, a detailed model should be developed based on site-specific industrial data.

In general, CSEGR appears to be promising for increasing natural gas production in the Altmark reservoirs while simultaneously sequestering CO₂.

REFERENCES

Oldenburg, C. M, and S. M. Benson, CO₂ Injection for Enhanced Gas Production and Carbon Sequestration, Soc. Petrol. Eng., SPE 74367, 2001

Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User's Guide, Version 2.0, Lawrence Berkeley National Laboratory Report, LBNL-43134, Berkeley, CA, November 1999

Ribbeck, H., Natural Gas Storage Project at Peckensen, Germany - Part 1, Spring 2001 Technical Class, 22 April 2001, Orlando, Florida, USA

ACKNOWLEDGEMENTS

The authors wish to express their thanks to Karsten Pruess of LBM. for his constructive suggestions and comments. The work was supported by the European Project CO_STORE under Contract No. ENKS-CT-2002-99621, and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. De-AC03-765F00098.